Expression of Interest for Developing an Application for Data Validation & Well Census Data Analysis

Groundwater Department is the nodal agency for groundwater investigation and construction of groundwater extraction structures in the State. The department has started functioning as a part of the Agriculture Department and later evolved as an independent department in the year 1978. The initial focus of the department was to provide solutions to irrigation needs and later extended to domestic and industrial needs also. Ever since its inception, Groundwater Department has been dealing with various groundwater-related issues and has been a key service provider to all the sectors across the State. The department is also presently engaged in implementing mini water supply schemes, conservation and management of groundwater resources and groundwater regime monitoring.

The development of an application to analyze the Well Census Data collected under the National Hydrology Project's Groundwater Department in association with "Kudambashree" during the financial year 2023. The primary objective of this application is to perform data analysis and visualization of the Well Census Data through a GIS interface to derive crucial insights for groundwater management and sustainability in the state of Kerala.

Project Overview:

The proposed application, will be a user-friendly and interactive GIS-based platform capable of processing and interpreting the Well Census Data collected from 7.5 lakh wells across 33 blocks in Kerala. The application should have the capability to generate maps, perform data interpolations, and visualize key parameters related to groundwater resources. The following are the main functionalities that the application should provide:

1. Depth to Water Level Analysis: The application should calculate the depth to water level in meters below ground level by utilizing relevant parameters from the dataset. The generated data should be plotted and interpolated to obtain a map depicting various ranges of static water level in "mbgl" (meters below ground level).

2. Groundwater Recharge Assessment: The application should analyze the depth to water level data in conjunction with other relevant parameters to identify areas suitable for implementing managed aquifer recharge. It should consider factors like slope, geology, and depth to bedrock to demarcate areas necessary for groundwater recharge.

3. Groundwater Quality Mapping: The application should generate a map showing the general groundwater quality of the surveyed area based on the available data (good/bad).

4. Groundwater Extraction Analysis: The application should classify the groundwater extraction based on the purpose (domestic, agriculture, industry) and calculate the well density in each area. It should also estimate the annual groundwater draft and compare it with the national and state-level standards.

5. Groundwater Sustainability Mapping: The application should analyze various parameters to categorize areas as groundwater sustainable and non-sustainable. It should identify areas with perennial wells, unaffected by drought, and with good water quality for sustainable groundwater management.

6. Spring Shed Management: The application should map springs in the surveyed area and delineate spring sheds using digital elevation models and geological data. It should assist in implementing micro water supply schemes and rejuvenating springs in need of restoration.

7. Well Statistics and Trends: The application should provide graphical representations of year and area-wise construction of groundwater abstraction structures to assess trends in groundwater dependency and regulate groundwater exploitation.

8. Groundwater Flow Direction: The application should generate a map showing the direction of groundwater flow based on depth to water level and altitude data. This information can be valuable for analyzing contaminant transport within the groundwater system.

Well census was an exercise taken up by groundwater department under National hydrology project in the financial year 2023. It was a massive drive conducted in association with "Kudambashree" on a pilot basis. Data from 7.5 lakh wells were collected from 33 blocks across Kerala was acquired through numerous enumerators of kudumbashree. In order to geo-tag the groundwater abstraction structures a mobile app named"Neerarivu" was developed. The Mobile app was empowered with 32 data fields which is given in the following table.

Sl No	Data Field
1	Unique ID (Structure type & spatial reference)
2	Date of observation

3	Location					
4	Administrative details					
5	Ownership (Private, government) (address)					
6	Survey No.					
7	Land Type (coastal area/valley/paddy field/side slope/mid slope/highland)					
8	Latitude					
9	Longitude					
10	Year of Construction of well					
11	Purpose of well (domestic/agriculture/industry)					
12	Status of well (in use/abandoned) (perennial/non-perennial)					
13	Well Diameter (m)					
14	Well Length (m)					
15	Well Breadth (m)					
16	Well Depth (m)					
17	Height of Parapet (m)					
18	Type of lining (Nil/concrete/laterite/brick/Tile)					
19	Depth of lining (m)					
20	Depth to hard rock (m)					
21	Well bottom material (laterite/clay/sand/weathered rock/hard rock)					
22	Energised (Y/N)					
23	Type of pump used (mono block/submersible/diesel/jet/compressor)					
24	HP of motor					

25	Static water level (mbgl)
26	Daily pumping (litres)
27	Tank capacity (litres)
28	Time to fill tank (hour /minutes)
29	Drought affected area (Yes/No)
30	Water quality (good/saline/muddy)
31	Picture of well
32	Additional information if any

Data analysis procedure

The basemap should have all the generic information such as survey numbers of plots, drainage, roads, panchayath boundary, ward boundary etc. A unique ID shall be generated for each well using survey number and type of well. The data collected shall be analyzed in a GIS interface for a visual interpretation of various data fields of the Neerarivu Mobile App.

Sl.	Parameter	Required	data	fields	&	Inference	Other Useful
No		procedure					Departments

Ι	Depth to	1,8,9, 25,17	The depth to	Local Self
	water level	The depth to water level in	water level in an	Government,
		the unit of meters below	area is an	Pollution
		ground level should be	indicative data	Control
		calculated by subtracting the	pertaining to the	Board, Health
		17 th parameter from 25 th	depth at which	Department,
		parameter. The generated	ground water	Haritha
		data should plot and	occurs beneath	Kerala
		interpolated to obtain a map	earth's surface.	Mission, Soil
		depicting various ranges of	Generally the	Conservation
		static water level in 'mbgl'.	term is expressed	Department,
		Each range of water level	in the unit	Public Works
		should be marked in different	'meters below	Department,
		colours for easy recognition.	ground level,	Irrigation
		consults for easy recognition.	From a map	Dept, Disaster
			plotted with	Management
			water level of an	Authority,
			area we can	Rural
			predict the	Development.
			possible depth of	Development.
			dug wells in that	
			area.	
			1. Also we	
			can	
			recommen d the	
			depth of	
			waste	
			disposal	
			pits such	
			as septic	
			tanks at a	
			depth 3 m	
			to 10 m	
			above the	
			water level	
			below	
			ground	
			level	

depending
on the
nature of
the
geologic
material
available in
the area.
2. A primary
delineatio
n of
recharge
and
discharge
areas of
groundwat
er can be
done from
this
analysis. If
the water
level is in
an area is
at a
shallow
depth the
chances of
contamina
tion of
groundwat
er may
also be
higher.

II	Groundwater	1, 8, 9, 25, 17,12	Demarcating	Soil
	recharge	The depth to water level in	areas necessary	Conservation,
		the unit of meters below	for implementing	LSGD, Rural
		ground level should be	managed aquifer	Development
		calculated by subtracting the	recharge.	and all
		17 th parameter from 25 th		Departments
		parameter. The generated		involved in
		data should plot and		JSA activities
		interpolated to obtain a map		
		depicting various ranges of		
		static water level in 'mbgl'.		
		The data in 12 th field should		
		also be considered. If the		
		water level is less than 3 m		
		below ground level chances		
		of water logging can be		
		expected and the areas can		
		be excluded from		
		rechargeable area. The areas		
		suitable for recharge should		
		be identified by combining		
		various aspects such as		
		slope, geology, depth to		
		bedrock etc.		

III	Groundwater	1,8,9,30	General	Pollution
	quality	General groundwater quality	groundwater	Control
		of the area shall be plotted in	quality of the area	Board, Health
		a map using 30 th field. From	can be analyzed	dept LSGD,
		the available data only 2	and can be	Haritha
		parameters (Good/Bad) can	categorized the	Keralam
		be demarcated.	area into good	Mission.
			and bad	
			groundwater	
			yielding areas.	
			Areas with bad	
			groundwater	
			quality can be	
			demarcated and	
			concerned	
			authorities can	
			take necessary	
			steps to provide	
			safe drinking	
			water for the	
			community.	

IV	Groundwater	1,8,9,11,22,23,24,26,27,28,29	The ground water	CGWB,
	extraction	In a map the abstraction	extraction can be	Irrigation
		structures shall be plotted	classified as per	Dept,
		according to the category	the purpose for	Agriculture
		mentioned in 11 th field	which ground	Dept LSGD,
		(Domestic, Industry, and	water is being	NABARD,
		Agriculture).	extracted using	CWRDM,
		Well density of each area has	mechanical	Industries,
		to be calculated and should	methods.	Economic and
		plot in a map depicting	Generally the	Statistics
		various ranges. Ground water	ground water	
		extraction can be calculated	U	
		from the 26 th field and it has	classified as	
		to be converted to annual		
		draft. The domestic draft	agriculture and	
		should be calculated and	industry uses.	
		interpolated to various	From the values	
		ranges. The ranges have to	of daily domestic	
		be compared with the	extraction a	
		national and state level lpcd.	realistic	
		The same procedure can be	quantification of	
		adopted for irrigation draft.	groundwater	
			extraction by	
			each household in	
			an area can be	
			obtained. This	
			value can be	
			compared with	
			the existing	
			National and state	
			level liters per	
			capita daily value.	
			If land use	
			pattern and crop	
			pattern in the	
			area is combined,	
			crop water	
			utilisation can be	
			assessed and can	

generate the
comparison
report with the
crop water ratio.
Groundwater
extraction is
above the
national
standards
authorities can
prescribe
regulatory
measures. When
the data relating
to ground water
extraction
became more
realistic, the
ground water
estimation will
also became more
accurate which in
turn help the
policy makers to
identify and act
upon areas were
regulation is
required.

V	Groundwater	1,8,9,12,29,30	The areas where	LSGD, water
	sustainability	The above parameters should	the wells are	Authority,
		be analyzed to produce a	perennial, not	Irrigation,
		map with various colors	affected by	Agriculture
		depicting sustainable and	drought and the	
		non-sustainable areas with	quality is good	
		respect to ground water.	the area can be	
			marked as	
			groundwater	
			sustainable areas.	
			The areas which	
			are not falling in	
			above category	
			should be	
			properly	
			monitored and	
			necessary	
			intervention such	
			as groundwater	
			recharge and the	
			quality	
			improvement	
			measures can be	
			adopted to	
			improve the	
			sustainability of	
			groundwater	
			resource in that	
			area.	

VI	Spring shed	1,8,9,10,12	If the spring is	IIM NABARD
V I	management	Springs of the surveyed area	perennial and	LSGD
	management	can be mapped and by	yielding good	LOOD
		combining a digital elevation	quality water,	
		model and geology map of	suitable micro	
		the area the spring sheds can	water supply	
		be delineated.	schemes can be	
		be defineated.	implemented.The	
			springs which are	
			in ruins can be	
			rejuvenated with	
			the proper spring shed	
			management	
			activities with the	
			aid from NABARD,	
			CGWB etc	TT 1.1 1 .
VII	Type of well	1,8,9	If the well density	Health dept,
		Well density according to the	in an area is high	LSGD,
		type of well can be assessed	necessary	Disaster
		from these parameters.	restriction for	Management
			regulating over	
			exploitation of	
			groundwater	
			should be	
			imposed.	
			The	
			administrative	
			authorities can	
			make necessary	
			intervention in	
			health sector	
			especially in case	
			of waterborne	
			disease and	
			empowering the	
			mechanism of	
			implementing	
			necessary	

			pro mongoon	
			pre-monsoon	
			sanitation.	
VIII	Well	1,8,9,10	The annual	LSGD,
	statistics	A graphical representation of	increase in	Economic and
		year and area wise	groundwater	Statistics
		construction of ground water	abstraction	dept, Water
		abstraction structure can be	structures	Authority
		prepard.	indicates a	
			gradual increase	
			in the	
			dependency of	
			groundwater for	
			various needs.	
			The trend of the	
			increase in	
			various types of	
			abstraction	
			structures should	
			be analyzed and	
			proper regulatory	
			measures should	
			be implemented.	
IX	Groundwater	1,8,9, (25-17)	The flow	Pollution
	Flow pattern	Depth to water level map	Direction of	Control
	I I I I I I I I I I I I I I I I I I I	generated in "meters below	ground water can	Board, Health
		ground level" values should	e	dept, LSGD,
		be converted to reduced	direction of	Industries
		level and by combining	contaminant	Department
		altitude of the area ,a map of	transport within	- F
		ground water flow direction	the groundwater	
		can be generated.	system in an area	
			i.e. source of	
			contamination	
			can be analyzed.	
			can be analyzeu.	

The EOI process

Kerala Startup Mission is approached by various Government Departments for the development of mobile and web applications. These requests are met through a facilitation deviced by KSUM. Kerala Startup Mission facilitates the entire process by helping departments to finalise technical specifications, circulating the same among startups, initial technical assessment and short listing for the committee to take final decision.

Following are the steps involved:

1. Call for Expression of Interest among startups incubated/registered with KSUM

2. Submission of EOI (in the link provided by KSUM)

3. KSUM to organize interaction with the Department for clarifying doubts and queries of interested startups.

4. Technical Proposals are then obtained from startups who have submitted the interest.

5. Technical proposals are then evaluated.

6. Startups who qualify the technical evaluation are then asked to submit the financial proposal.

7. L1 among the startups is identified by the method of Quality and Cost Based Selection (QCBS) wherein 70% marks for the technical proposal and 30% for the financial proposal.

8. The L1 startup is then recommended to the Department.

9. KSUM ensures that the startup delivers the product to the Department and the Department is satisfied with the work.

10. The payment is made directly by the department to the startup after signing an Agreement.

11. The Department is also expected to do the Security auditing of the application developed by the startup through CERT-K and also to host the application in the State Data Center

Eligibility for Startup to participate in the EOI

The startup has to be registered with Kerala Startup Mission and Startup India.